Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Abstract

14 pages, 15 figures, resubmitted to ApJ, figure 15 modifiedWhile it is generally accepted that Type Ia supernovae are the result of the explosion of a carbon-oxygen White Dwarf accreting mass in a binary system, the details of their genesis still elude us, and the nature of the binary companion is uncertain. Kasen (2010) points out that the presence of a non-degenerate companion in the progenitor system could leave an observable trace: a flux excess in the early rise portion of the lightcurve caused by the ejecta impact with the companion itself. This excess would be observable only under favorable viewing angles, and its intensity depends on the nature of the companion. We searched for the signature of a non-degenerate companion in three years of Supernova Legacy Survey data by generating synthetic lightcurves accounting for the effects of shocking and comparing true and synthetic time series with Kolmogorov-Smirnov tests. Our most constraining result comes from noting that the shocking effect is more prominent in rest-frame B than V band: we rule out a contribution from white dwarf-red giant binary systems to Type Ia supernova explosions greater than 10% at 2 sigma, and than 20% at 3 sigma level

Similar works

Full text

thumbnail-image

HAL-CEA

redirect
Last time updated on 12/11/2016

This paper was published in HAL-CEA.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.