Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Magnetohydrodynamic Turbulence and Reconnection in the Magnetotail

Abstract

We have used a global MHD simulation with high spatial resolution to investigate the origin and properties of turbulence in the plasma sheet. In this simulation we imposed a steady southward IMF with a magnitude of 5 nT at the upstream simulation boundary for more than three hours followed by ninety minutes of northward IMF of the same magnitude. The solar wind number density was 20 cm-3, the thermal pressure was 20 pPa, and the velocity was 500 km/s in the x direction. The moderately high dynamic pressure confined the magnetotail to the high-grid resolution region. Even for these nominal solar wind parameters and steady driving the plasma sheet became turbulent. The power spectral densities and probability distribution functions computed from the simulations were comparable to those obtained from spacecraft observations. The largest scale vortices were associated with reconnection outflows and, in the southward IMF case, with the diversion of high speed flows in the near-Earth region. Both time and space domain analyses revealed that there were three scales present, the large scale of the driving processes, the intermediate inertial scale and the dissipative scale

Similar works

Loading suggested articles...

Leaflet © OpenStreetMap contributors

This paper was published in NASA Technical Reports Server.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.

We use cookies to improve our website.

Learn more