UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Quantitative diffusion MRI with application to multiple sclerosis

Powell, Elizabeth; (2020) Quantitative diffusion MRI with application to multiple sclerosis. Doctoral thesis (Ph.D), UCL (University College London). Green open access

[thumbnail of epowell_phd_thesis.pdf]
Preview
Text
epowell_phd_thesis.pdf - Accepted Version

Download (27MB) | Preview

Abstract

Diffusion MRI (dMRI) is a uniquely non-invasive probe of biological tissue properties, increasingly able to provide access to ever more intricate structural and microstructural tissue information. Imaging biomarkers that reveal pathological alterations can help advance our knowledge of complex neurological disorders such as multiple sclerosis (MS), but depend on both high quality image data and robust post-processing pipelines. The overarching aim of this thesis was to develop methods to improve the characterisation of brain tissue structure and microstructure using dMRI. Two distinct avenues were explored. In the first approach, network science and graph theory were used to identify core human brain networks with improved sensitivity to subtle pathological damage. A novel consensus subnetwork was derived using graph partitioning techniques to select nodes based on independent measures of centrality, and was better able to explain cognitive impairment in relapsing-remitting MS patients than either full brain or default mode networks. The influence of edge weighting scheme on graph characteristics was explored in a separate study, which contributes to the connectomics field by demonstrating how study outcomes can be affected by an aspect of network design often overlooked. The second avenue investigated the influence of image artefacts and noise on the accuracy and precision of microstructural tissue parameters. Correction methods for the echo planar imaging (EPI) Nyquist ghost artefact were systematically evaluated for the first time in high b-value dMRI, and the outcomes were used to develop a new 2D phase-corrected reconstruction framework with simultaneous channel-wise noise reduction appropriate for dMRI. The technique was demonstrated to alleviate biases associated with Nyquist ghosting and image noise in dMRI biomarkers, but has broader applications in other imaging protocols that utilise the EPI readout. I truly hope the research in this thesis will influence and inspire future work in the wider MR community.

Type: Thesis (Doctoral)
Qualification: Ph.D
Title: Quantitative diffusion MRI with application to multiple sclerosis
Event: UCL (University College London)
Open access status: An open access version is available from UCL Discovery
Language: English
Additional information: Copyright © The Author [year]. Original content in this thesis is licensed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) Licence (https://creativecommons.org/licenses/by/4.0/). Any third-party copyright material present remains the property of its respective owner(s) and is licensed under its existing terms. Access may initially be restricted at the author’s request.
UCL classification: UCL
UCL > Provost and Vice Provost Offices
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Engineering Science > Dept of Computer Science
URI: https://discovery.ucl.ac.uk/id/eprint/10096391
Downloads since deposit
196Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item