UCL Discovery
UCL home » Library Services » Electronic resources » UCL Discovery

Fault-tolerant error correction with the gauge color code

Brown, BJ; Nickerson, NH; Browne, DE; (2016) Fault-tolerant error correction with the gauge color code. Nature Communications , 7 (12302) 10.1038/ncomms12302. Green open access

[thumbnail of ncomms12302.pdf]
Preview
Text
ncomms12302.pdf

Download (531kB) | Preview

Abstract

The constituent parts of a quantum computer are inherently vulnerable to errors. To this end, we have developed quantum error-correcting codes to protect quantum information from noise. However, discovering codes that are capable of a universal set of computational operations with the minimal cost in quantum resources remains an important and ongoing challenge. One proposal of significant recent interest is the gauge color code. Notably, this code may offer a reduced resource cost over other well-studied fault-tolerant architectures by using a new method, known as gauge fixing, for performing the non-Clifford operations that are essential for universal quantum computation. Here we examine the gauge color code when it is subject to noise. Specifically, we make use of single-shot error correction to develop a simple decoding algorithm for the gauge color code, and we numerically analyse its performance. Remarkably, we find threshold error rates comparable to those of other leading proposals. Our results thus provide the first steps of a comparative study between the gauge color code and other promising computational architectures.

Type: Article
Title: Fault-tolerant error correction with the gauge color code
Open access status: An open access version is available from UCL Discovery
DOI: 10.1038/ncomms12302
Publisher version: http://dx.doi.org/10.1038/ncomms12302
Language: English
Additional information: This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
Keywords: Science & Technology, Multidisciplinary Sciences, Science & Technology - Other Topics, QUANTUM COMPUTATION, MEMORY, THRESHOLD, RATES
UCL classification: UCL
UCL > Provost and Vice Provost Offices > UCL BEAMS
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences
UCL > Provost and Vice Provost Offices > UCL BEAMS > Faculty of Maths and Physical Sciences > Dept of Physics and Astronomy
URI: https://discovery.ucl.ac.uk/id/eprint/1512749
Downloads since deposit
72Downloads
Download activity - last month
Download activity - last 12 months
Downloads by country - last 12 months

Archive Staff Only

View Item View Item