Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

A genetic algorithm based method for stringent haplotyping of family data

Abstract

Background: The linkage phase, or haplotype, is an extra level of information that in addition to genotype and pedigree can be useful for reconstructing the inheritance pattern of the alleles in a pedigree, and computing for example Identity By Descent probabilities. If a haplotype is provided, the precision of estimated IBD probabilities increases, as long as the haplotype is estimated without errors. It is therefore important to only use haplotypes that are strongly supported by the available data for IBD estimation, to avoid introducing new errors due to erroneous linkage phases. Results: We propose a genetic algorithm based method for haplotype estimation in family data that includes a stringency parameter. This allows the user to decide the error tolerance level when inferring parental origin of the alleles. This is a novel feature compared to existing methods for haplotype estimation. We show that using a high stringency produces haplotype data with few errors, whereas a low stringency provides haplotype estimates in most situations, but with an increased number of errors. Conclusion: By including a stringency criterion in our haplotyping method, the user is able to maintain the error rate at a suitable level for the particular study; one can select anything from haplotyped data with very small proportion of errors and a higher proportion of non-inferred haplotypes, to data with phase estimates for every marker, when haplotype errors are tolerable. Giving this choice makes the method more flexible and useful in a wide range of applications as it is able to fulfil different requirements regarding the tolerance for haplotype errors, or uncertain marker-phases.Manuscripttitle in list of papers in thesis: A genetic algorithm based haplotyping method provides better control on haplotype error rate</p

Similar works

Full text

thumbnail-image

Publikationer från Uppsala Universitet

redirect
Last time updated on 13/06/2016

This paper was published in Publikationer från Uppsala Universitet.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.