Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Effect of van der Waals forces on the stacking of coronenes encapsulated in a single-wall carbon nanotube and many-body excitation spectrum

Abstract

International audienceWe investigate the geometry, stability, electronic structure and optical properties of C 24 H 12 coronenes encapsulated in a single-wall (19,0) carbon nanotube. By an adequate combination of advanced electronic-structure techniques, involving weak and van der Waals interaction , as well as many-body effects for establishing electronic properties and excitations, we have accurately characterized this hybrid carbon nanostructure, which arises as a promising candidate for opto-electronic nanodevices. In particular, we show that the structure of the stacked coronenes inside the nanotube is characterized by a rotation of every coronene with respect to its neighbors through van der Waals interaction, which is of paramount importance in these systems. We also suggest a tentative modification of the system for this particular rotation to be observed experimentally. A comparison between the calculated many-body excitation spectrum of the systems involved reveals a pronounced optical red-shift with respect to the coronene-stacking gas-phase. The origin of this red-shift is explained in terms of the confinement of the coronene molecules inside the nanotube, showing an excellent agreement with the available experimental evidence

Similar works

Full text

thumbnail-image

HAL-CEA

redirect
Last time updated on 13/04/2017

This paper was published in HAL-CEA.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.