Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Gibbs distributions for random partitions generated by a fragmentation process

Abstract

38 pages, 2 figures, version considerably modified. To appear in the Journal of Statistical Physics.In this paper we study random partitions of 1,...n, where every cluster of size j can be in any of w_j possible internal states. The Gibbs (n,k,w) distribution is obtained by sampling uniformly among such partitions with k clusters. We provide conditions on the weight sequence w allowing construction of a partition valued random process where at step k the state has the Gibbs (n,k,w) distribution, so the partition is subject to irreversible fragmentation as time evolves. For a particular one-parameter family of weight sequences w_j, the time-reversed process is the discrete Marcus-Lushnikov coalescent process with affine collision rate K_{i,j}=a+b(i+j) for some real numbers a and b. Under further restrictions on a and b, the fragmentation process can be realized by conditioning a Galton-Watson tree with suitable offspring distribution to have n nodes, and cutting the edges of this tree by random sampling of edges without replacement, to partition the tree into a collection of subtrees. Suitable offspring distributions include the binomial, negative binomial and Poisson distributions

Similar works

Full text

thumbnail-image

Hal-Diderot

redirect
Last time updated on 14/04/2021

This paper was published in Hal-Diderot.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.