Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Coherent magneto-optical polarisation dynamics in a single chiral carbon nanotube

Abstract

Communication oraleInternational audienceWe propose a theoretical framework and a dynamical model for the description of the natural optical activity and the Faraday rotation in an individual chiral single-walled carbon nanotube in the highly nonlinear coherent regime. The model is based on a discrete-level representation of the optically active states near the band edge. Chirality is modelled by a system Hamiltonian corresponding to energy-level configurations, specific for each handedness, that are mirror reflections of each other. An axial magnetic field is introduced through the Aharonov-Bohm and Zeeman energy-level shifts. The time evolution of the quantum system following an ultrafast circularly polarised optical excitation is studied using the coherent vector Maxwell pseudospin equations. Giant natural and magneto-optical gyrotropy, exceeding the one of the artificial photonic metamaterials, is numerically demonstrated for a single (5, 4) carbon nanotube and an estimate of the magnitude of the natural and magneto-chiral circular dichroism and specific optical rotatory power is obtained. The model provides a framework for the investigation of chirality and magnetic field dependence of the ultrafast nonlinear optical response of a single carbon nanotube

Similar works

Full text

thumbnail-image

Hal-Diderot

redirect
Last time updated on 08/11/2016

This paper was published in Hal-Diderot.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.