Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Fractional order differentiation by integration and error analysis in noisy environment: Part 2 discrete case

Abstract

In the first part of this work, the differentiation by integration method has been generalized from the integer order to the fractional order so as to estimate the fractional order derivatives of noisy signals. The estimation errors for the proposed fractional order Jacobi differentiators have been studied in continuous case. In this paper, the focus is on the study of these differentiators in discrete case. Firstly, the noise error contribution due to a large class of stochastic processes is studied in discrete case. In particular, it is shown that the differentiator based on the Caputo fractional order derivative can cope with a class of noises, the mean value and variance functions of which are time-variant. Secondly, by using the obtained noise error bound and the error bound for the bias term error obtained in the first part, we analyze the design parameters' influence on the obtained fractional order differentiators. Thirdly, according to the knowledge of the design parameters' influence, the fractional order Jacobi differentiators are significantly improved by admitting a time-delay. In order to reduce the calculation time for on-line applications, a recursive algorithm is proposed. Finally, numerical simulations show their accuracy and robustness with respect to corrupting noises

Similar works

Full text

thumbnail-image

HAL Descartes

redirect
Last time updated on 14/04/2021

This paper was published in HAL Descartes.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.