Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Novel failure prognostics approach with dynamic thresholds for machine degradation.

Abstract

International audienceEstimating remaining useful life (RUL) of critical machinery is a challenging task. It is achieved through essential steps of data acquisition, data pre-processing and prognostics modeling. To estimate RUL of a degrading machinery, prognostics modeling phase requires precise knowledge about failure threshold (FT) (or failure definition). Practically, degrading machinery can have different levels (states) of degradation before failure, and prognostics can be quite complicated or even impossible when there is absence of prior knowledge about actual states of degrading machinery or FT. In this paper a novel approach is proposed to improve failure prognostics. In brief, the proposed prognostics model integrates two new algorithms, namely, a Summation Wavelet Extreme Learning Machine (SWELM) and Subtractive-Maximum Entropy Fuzzy Clustering (S-MEFC) to predict degrading behavior, automatically identify the states of degrading machinery, and to dynamically assign FT. Indeed, for practical reasons there is no interest in assuming FT for RUL estimation. The effectiveness of the approach is judged by applying it to real dataset in order to estimate future breakdown of a real machinery

Similar works

Full text

thumbnail-image

HAL - Université de Franche-Comté

redirect
Last time updated on 12/11/2016

This paper was published in HAL - Université de Franche-Comté.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.