Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Statistical efficiency of structured cpd estimation applied to Wiener-Hammerstein modeling

Abstract

Accepted for publication in the Proceedings of the European Signal Processing Conference (EUSIPCO) 2015.International audienceThe computation of a structured canonical polyadic decomposition (CPD) is useful to address several important modeling problems in real-world applications. In this paper, we consider the identification of a nonlinear system by means of a Wiener-Hammerstein model, assuming a high-order Volterra kernel of that system has been previously estimated. Such a kernel, viewed as a tensor, admits a CPD with banded circulant factors which comprise the model parameters. To estimate them, we formulate specialized estimators based on recently proposed algorithms for the computation of structured CPDs. Then, considering the presence of additive white Gaussian noise, we derive a closed-form expression for the Cramer-Rao bound (CRB) associated with this estimation problem. Finally, we assess the statistical performance of the proposed estimators via Monte Carlo simulations, by comparing their mean-square error with the CRB

Similar works

Full text

thumbnail-image

Hal-Diderot

redirect
Last time updated on 14/04/2021

This paper was published in Hal-Diderot.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.