Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Proof of a modular relation between 1-, 2- and 3-loop Feynman diagrams on a torus

Abstract

36 pages, 9 figuresThe coefficients of the higher-derivative terms in the low energy expansion of genus-one graviton scattering amplitudes are determined by integrating sums of non-holomorphic modular functions over the complex structure modulus of a torus. In the case of the four-graviton amplitude, each of these modular functions is a multiple sum associated with a Feynman diagram for a free massless scalar field on the torus. The lines in each diagram join pairs of vertex insertion points and the number of lines defines its weight ww, which corresponds to its order in the low energy expansion. Previous results concerning the low energy expansion of the genus-one four-graviton amplitude led to a number of conjectured relations between modular functions of a given ww, but different numbers of loops ≤w−1\le w-1. In this paper we shall prove the simplest of these conjectured relations, namely the one that arises at weight w=4w=4 and expresses the three-loop modular function D4D_4 in terms of modular functions with one and two loops. As a byproduct, we prove three intriguing new holomorphic modular identities

Similar works

Full text

thumbnail-image

HAL-CEA

redirect
Last time updated on 12/11/2016

This paper was published in HAL-CEA.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.