Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Complexity of colouring problems restricted to unichord-free and { square,unichord }-free graphs

Abstract

International audienceA \emph{unichord} in a graph is an edge that is the unique chord of a cycle. A \emph{square} is an induced cycle on four vertices. A graph is \emph{unichord-free} if none of its edges is a unichord. We give a slight restatement of a known structure theorem for unichord-free graphs and use it to show that, with the only exception of the complete graph K4K_4, every square-free, unichord-free graph of maximum degree~3 can be total-coloured with four colours. Our proof can be turned into a polynomial time algorithm that actually outputs the colouring. This settles the class of square-free, unichord-free graphs as a class for which edge-colouring is NP-complete but total-colouring is polynomial

Similar works

Full text

thumbnail-image

Hal-Diderot

redirect
Last time updated on 14/04/2021

This paper was published in Hal-Diderot.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.