Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

A Learning-based Shared Control Architecture for Interactive Task Execution

Abstract

International audienceShared control is a key technology for various robotic applications in which a robotic system and a human operator are meant to collaborate efficiently. In order to achieve efficient task execution in shared control, it is essential to predict the desired behavior for a given situation or context in order to simplify the control task for the human operator. This prediction is obtained by exploiting Learning from Demonstration (LfD), which is a popular approach for transferring human skills to robots. We encode the demonstrated behavior as trajectory distributions and generalize the learned distributions to new situations. The goal of this paper is to present a shared control framework that uses learned expert distributions to gain more autonomy. Our approach controls the balance between the controller's autonomy and the human preference based on the distributions of the demonstrated trajectories. Moreover, the learned distributions are autonomously refined from col-laborative task executions, resulting in a master-slave system with increasing autonomy that requires less user input with an increasing number of task executions. We experimentally validated that our shared control approach enables efficient task executions. Moreover, the conducted experiments demonstrated that the developed system improves its performances through interactive task executions with our shared control

Similar works

Full text

thumbnail-image

HAL Descartes

redirect
Last time updated on 14/04/2021

This paper was published in HAL Descartes.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.