Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Dispersively Detected Pauli Spin-Blockade in a Silicon Nanowire Field-Effect Transistor

Abstract

International audienceWe report the dispersive readout of the spin state of a double quantum dot formed at the corner states of a silicon nanowire field-effect transistor. Two face-to-face top-gate electrodes allow us to independently tune the charge occupation of the quantum dot system down to the few-electron limit. We measure the charge stability of the double quantum dot in DC transport as well as dispersively via in situ gate-based radio frequency reflectometry, where one top-gate electrode is connected to a resonator. The latter removes the need for external charge sensors in quantum computing architectures and provides a compact way to readout the dispersive shift caused by changes in the quantum capacitance during inter-dot charge transitions. Here, we observe Pauli spin-blockade in the high-frequency response of the circuit at finite magnetic fields between singlet and triplet states. The blockade is lifted at higher magnetic fields when intra-dot triplet states become the ground state configuration. A line shape analysis of the dispersive phase shift reveals furthermore an intra-dot valley-orbit splitting Delta(v0) of 145 mu eV. Our results open up the possibility to operate compact complementary metal-oxide semiconductor (CMOS) technology as a singlet-triplet qubit and make split-gate silicon nanowire architectures an ideal candidate for the study of spin dynamics

Similar works

Full text

thumbnail-image

HAL-CEA

redirect
Last time updated on 02/12/2017

This paper was published in HAL-CEA.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.