Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Analysis of a nonsmooth optimization approach to robust estimation

Abstract

International audienceIn this paper, we consider the problem of identifying a linear map from measurements which are subject to intermittent and arbitarily large errors. This is a fundamental problem in many estimation-related applications such as fault detection, state estimation in lossy networks, hybrid system identification, robust estimation, etc. The problem is hard because it exhibits some intrinsic combinatorial features. Therefore, obtaining an effective solution necessitates relaxations that are both solvable at a reasonable cost and effective in the sense that they can return the true parameter vector. The current paper discusses a nonsmooth convex optimization approach and provides a new analysis of its behavior. In particular, it is shown that under appropriate conditions on the data, an exact estimate can be recovered from data corrupted by a large (even infinite) number of gross errors

Similar works

Full text

thumbnail-image

HAL Descartes

redirect
Last time updated on 23/03/2021

This paper was published in HAL Descartes.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.