Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

IAS: an IoT Architectural Self-adaptation Framework

Abstract

International audienceThis paper develops a generic approach to model control loops and their interac- tion within the Internet of Things (IoT) environments. We take advantage of MAPE-K loops to enable architectural self-adaptation. The system’s architectural setting is aligned with the adaptation goals and the components run-time situation and constraints. We introduce an integrated framework for IoT Architectural Self-adaptation (IAS) where functional control elements are in charge of environmental adaptation and autonomic control elements handle the functional system’s architectural adaptation. A Queuing Networks (QN) approach was used for modeling the IAS. The IAS-QN can model control levels and their interaction to perform both architectural and environmental adaptations. The IAS-QN was modeled on a smart grid system for the Melle-Longchamp area (France). Our architectural adaptation approach successfully set the propositions to enhance the performance of the electricity trans- mission system. This industrial use-case is a part of CPS4EU European industrial innovation pro ject

Similar works

Full text

thumbnail-image

Hal - Université Grenoble Alpes

redirect
Last time updated on 22/11/2020

This paper was published in Hal - Université Grenoble Alpes.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.