Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Analytical approximations of K-corrections in optical and near-infrared bands

Abstract

International audienceTo compare photometric properties of galaxies at different redshifts, the fluxes need to be corrected for the changes of effective rest-frame wavelengths of filter bandpasses, called K-corrections. Usual approaches to compute them are based on the template fitting of observed spectral energy distributions (SED) and, thus, require multicolour photometry. Here, we demonstrate that, in cases of widely used optical and near-infrared (NIR) filters, K-corrections can be precisely approximated as two-dimensional low-order polynomials of only two parameters: redshift and one observed colour. With this minimalist approach, we present the polynomial fitting functions for K-corrections in Sloan Digital Sky Survey (SDSS) ugriz, United Kingdom Infrared Telescope (UKIRT) Wide Field Camera YJHK, Johnson-Cousins UBVRcIc and Two Micron All Sky Survey JHKs bands for galaxies at redshifts Z < 0.5 based on empirically computed values obtained by fitting combined optical-NIR SEDs of a set of 105 galaxies constructed from SDSS Data Release 7 (DR7) and UKIRT Infrared Deep Sky Survey DR5 photometry using the Virtual Observatory. For luminous red galaxies we provide K-corrections as functions of their redshifts only. In two filters, g and r, we validate our solutions by computing K-corrections directly from SDSS DR7 spectra. We also present a K-corrections calculator, a web-based service for computing K-corrections online

Similar works

Full text

thumbnail-image

Hal-Diderot

redirect
Last time updated on 14/04/2021

This paper was published in Hal-Diderot.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.