Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Space-time sensors using multiple-wave atom levitation

Abstract

International audienceThe best clocks to date control the atomic motion by trapping the sample in an optical lattice and then interrogate the atomic transition by shining on these atoms a distinct laser of controlled frequency. In order to perform both tasks simultaneously and with the same laser field, we propose to use instead the levitation of a Bose-Einstein condensate through multiple-wave atomic interferences. The levitating condensate experiences a coherent localization in momentum and a controlled diffusion in altitude. The sample levitation is bound to resonance conditions used either for frequency or for acceleration measurements. The chosen vertical geometry solves the limitations imposed by the sample free fall in previous optical clocks using also atomic interferences. This configuration yields multiple-wave interferences enabling levitation and enhancing the measurement sensitivity. This setup, analogous to an atomic resonator in momentum space, constitutes an attractive alternative to existing atomic clocks and gravimeters

Similar works

Full text

thumbnail-image

HAL Descartes

redirect
Last time updated on 18/08/2022

This paper was published in HAL Descartes.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.