Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Differential Privacy: on the trade-off between Utility and Information Leakage

Abstract

International audienceDifferential privacy is a notion of privacy that has become very popular in the database community. Roughly, the idea is that a randomized query mechanism provides sufficient privacy protection if the ratio between the probabilities that two adjacent datasets give the same answer is bound by eϵe^\epsilon. In the field of information flow there is a similar concern for controlling information leakage, i.e. limiting the possibility of inferring the secret information from the observables. In recent years, researchers have proposed to quantify the leakage in terms of Rényi min mutual information, a concept strictly related to the Bayes risk. In this paper, we show how to model the query system in terms of an information-theoretic channel, and we compare the notion of differential privacy with that of mutual information. We show that differential privacy implies a bound on the mutual information. Furthermore, we show that our bound is tight. Then, we consider the utility of the randomization mechanism, which represents how close the randomized answers are, in average, to the real ones. We show that the notion of differential privacy implies a bound on utility, also tight, and we propose a method that under certain conditions builds an optimal randomization mechanism, i.e. a mechanism which provides the best utility while guaranteeing differential privacy

Similar works

Full text

thumbnail-image

HAL-Polytechnique

redirect
Last time updated on 12/11/2016

This paper was published in HAL-Polytechnique.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.