Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Use of habitat suitability modeling in the integrated urban water system modeling of the Drava River (Varazdin, Croatia)

Abstract

The development of practical tools for providing accurate ecological assessment of rivers and species conditions is necessary to preserve habitats and species, stop degradation and restore water quality. An understanding of the causal mechanisms and processes that affect the ecological water quality and shape macroinvertebrate communities at a local scale has important implications for conservation management and river restoration. This study used the integration of wastewater treatment, river water quality and ecological assessment models to study the effect of upgrading a wastewater treatment plant (WWTP) and their ecological effects for the receiving river. The WWTP and the water quality and quantity of the Drava river in Croatia were modelled in the software WEST. For the ecological modeling, the approach followed was to build habitat suitability and ecological assessment models based on classification trees. This technique allows predicting the biological water quality in terms of the occurrence of macroinvertebrates and the river status according to ecological water quality indices. The ecological models developed were satisfactory, and showed a good predictive performance and good discrimination capacity. Using the integrated ecological model for the Drava river, three scenarios were run and evaluated. The scenario assessment showed that it is necessary an integrated approach for the water management of the Drava river, which considers an upgrading of the WWTP with Nitrogen and Phosphorous removal and the treatment of other diffuse pollution and point sources (including the overflow of the WWTP). Additionally, if an increase in the minimum instream flow after the dams is considered, a higher dilution capacity and a higher self-cleaning capability could be obtained. The results proved that integrated models like the one presented here have an added value for decision support in water management. This kind of integrated approach is useful to get insight in aquatic ecosystems, for assessing investments in sanitation infrastructure of urban wastewater systems considering both, the fulfilling of legal physical chemical emission limits and the ecological state of the receiving waters

Similar works

This paper was published in Ghent University Academic Bibliography.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.