Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

A two-step perturbation technique for nonuniform single and differential lines

Abstract

A novel two-step perturbation technique to analyze nonuniform single and differential transmission lines in the frequency domain is presented. Here, nonuniformities are considered as perturbations with respect to a nominal uniform line, allowing an interconnect designer to easily see what the effect of (unwanted) perturbations might be. Based on the Telegrapher's equations, the proposed approach yields second-order ordinary distributed differential equations with source terms. Solving these equations in conjunction with the pertinent boundary conditions leads to the sought-for currents and voltages along the lines. The accuracy and efficiency of the perturbation technique is demonstrated for a linearly tapered microstrip line and for a pair of coupled lines with random nonuniformities. Moreover, the necessity of adopting a two-step perturbation in order to get a good accuracy is also illustrated

Similar works

This paper was published in Ghent University Academic Bibliography.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.