Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

A constrained multi-objective surrogate-based optimization algorithm

Abstract

Surrogate models or metamodels are widely used in the realm of engineering for design optimization to minimize the number of computationally expensive simulations. Most practical problems often have conflicting objectives, which lead to a number of competing solutions which form a Pareto front. Multi-objective surrogate-based constrained optimization algorithms have been proposed in literature, but handling constraints directly is a relatively new research area. Most algorithms proposed to directly deal with multi-objective optimization have been evolutionary algorithms (Multi-Objective Evolutionary Algorithms -MOEAs). MOEAs can handle large design spaces but require a large number of simulations, which might be infeasible in practice, especially if the constraints are expensive. A multi-objective constrained optimization algorithm is presented in this paper which makes use of Kriging models, in conjunction with multi-objective probability of improvement (PoI) and probability of feasibility (PoF) criteria to drive the sample selection process economically. The efficacy of the proposed algorithm is demonstrated on an analytical benchmark function, and the algorithm is then used to solve a microwave filter design optimization problem

Similar works

This paper was published in Ghent University Academic Bibliography.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.