Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Faster identification of optimal contraction sequences for tensor networks

Abstract

The efficient evaluation of tensor expressions involving sums over multiple indices is of significant importance to many fields of research, including quantum many-body physics, loop quantum gravity, and quantum chemistry. The computational cost of evaluating an expression may depend strongly on the order in which the index sums are evaluated, and determination of the operation-minimizing contraction sequence for a single tensor network (single term, in quantum chemistry) is known to be NP-hard. The current preferred solution is an exhaustive search, using either an iterative depth-first approach with pruning or dynamic programming and memoization, but these approaches are impractical for many of the larger tensor network ansatze encountered in quantum many-body physics. We present a modified search algorithm with enhanced pruning which exhibits a performance increase of several orders of magnitude while still guaranteeing identification of an optimal operation-minimizing contraction sequence for a single tensor network

Similar works

This paper was published in Ghent University Academic Bibliography.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.