Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Fully automatic binary glioma grading based on pre-therapy MRI using 3D Convolutional Neural Networks

Abstract

The optimal treatment strategy of newly diagnosed glioma is strongly influenced by tumour malignancy. Manual non-invasive grading based on MRI is not always accurate and biopsies to verify diagnosis negatively impact overall survival. In this paper, we propose a fully automatic 3D computer-aided diagnosis (CAD) system to non-invasively differentiate high-grade glioblastoma from lower-grade glioma. The approach consists of an automatic segmentation step to extract the tumour ROI followed by classification using a 3D convolutional neural network. Segmentation was performed using a 3D U-Net achieving a dice score of 88.53% which matches top performing algorithms in the BraTS 2018 challenge. The classification network was trained and evaluated on a large heterogeneous dataset of 549 patients reaching an accuracy of 91%. Additionally, the CAD system was evaluated on data from the Ghent University Hospital and achieved an accuracy of 92% which shows that the algorithm is robust to data from different centres

Similar works

This paper was published in Ghent University Academic Bibliography.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.