Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Laser powder bed additive manufacturing: A review on the four drivers for an online control

Abstract

Online control of Additive Manufacturing (AM) processes appears to be the next challenge in the transition toward Industry 4.0 (I4.0). Although many efforts have been dedicated by industry and research in the last decades, there remains substantial room for improvement. Additionally, the existing scientific literature lacks a wide-ranging identification and classification of the primary drivers that enable online control of AM processes. This article focuses on online control of one of the most industrially widespread AM processes: metal Laser Powder Bed Fusion (L-PBF), with particular emphasis on two subcategories, namely Selective Laser Sintering (SLS) and Selective Laser Melting (SLM). Through a systematic literature review, this article initially identified over 200 manuscripts. The search was conducted utilizing a defined research query within the Scopus database, double checked on Scholar. The results were refined through multiple phases of inclusion/exclusion criteria, culminating in the selection of 95 pertinent papers. This article aims to provide a systematic and comprehensive review of four identified drivers i) Online controllable input parameters, ii) Online observable output signatures, iii) Online sensing techniques, iv) Online feedback strategies, adopted from the general Deming control loop Plan-Do-Check-Act (PDCA). Ultimately, this article delves into the challenges and prospects inherent in the online control of metal L-PBF

Similar works

Full text

thumbnail-image

Archivio della Ricerca - Università di Pisa

redirect
Last time updated on 17/10/2023

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.