Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Nanoparticle-doped electrospun fiber random lasers with spatially extended light modes

Abstract

Complex assemblies of light-emitting polymer nanofibers with molecular materials exhibiting optical gain can lead to important advance to amorphous photonics and to random laser science and devices. In disordered mats of nanofibers, multiple scattering and waveguiding might interplay to determine localization or spreading of optical modes as well as correlation effects. Here we study electrospun fibers embedding a lasing fluorene-carbazole-fluorene molecule and doped with titania nanoparticles, which exhibit random lasing with sub-nm spectral width and threshold of about 9 mJ cm−2 for the absorbed excitation fluence. We focus on the spatial and spectral behavior of optical modes in the disordered and non-woven networks, finding evidence for the presence of modes with very large spatial extent, up to the 100 μm-scale. These findings suggest emission coupling into integrated nanofiber transmission channels as effective mechanism for enhancing spectral selectivity in random lasers and correlations of light modes in the complex and disordered material

Similar works

Full text

thumbnail-image

Archivio della Ricerca - Università di Pisa

redirect
Last time updated on 09/02/2018

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.