Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Self-Assembled Multivalent (SAMul) Polyanion Binding - Impact of Hydrophobic Modifications in the Micellar Core on DNA and Heparin Binding at the Peripheral Cationic Ligands

Abstract

This paper reports a small family of cationic surfactants designed to bind polyanions such as DNA and heparin. Each molecule has the same hydrophilic cationic ligand, and a hydrophobic aliphatic group with eighteen carbon atoms with either one, two or three alkene groups within the hydrophobic chain (C18-1, C18-2 and C18-3). Dynamic light scattering indicates that more alkenes lead to geometric distortion, giving rise to larger self-assembled multivalent (SAMul) nanostructures. Mallard Blue and Ethidium Bromide dye displacement assays demonstrate that heparin and DNA have markedly different binding preferences, with heparin binding most effectively to C18-1, and DNA to C18-3, even though the molecular structural differences of these SAMul systems are buried in the hydrophobic core. Multiscale modelling suggests that adaptive heparin maximises enthalpically-favourable interactions with C18-1, while shape-persistent DNA forms a similar number of interactions with each ligand display, but with slightly less entropic cost for binding to C18-3 - fundamental thermodynamic differences in SAMul binding of heparin or DNA. This study therefore provides unique insight into electrostatic molecular recognition between highly charged nanoscale surfaces in biologically-relevant systems

Similar works

Full text

thumbnail-image

Archivio istituzionale della ricerca - Università di Trieste

redirect
Last time updated on 12/08/2017

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.