Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Euclidean mirrors: enhanced vacuum decay from reflected instantons

Abstract

We study the tunneling of virtual matter-antimatter pairs from the quantum vacuum in the presence of a spatially uniform temporal electric background composed of of a strong slow field superimposed with a weak rapid field. After analytic continuation to Euclidean spacetime we obtain from the instanton equations two critical points. While one of them is the closing point of the instanton path, the other serves as an Euclidean mirror which reflects and squeezes the instanton. It is this reflection and shrinking which is responsible for an enormous enhancement of the vacuum pair production rate. We discuss how important features of this mechanism can be analysed and understood via such a rotation in the complex plane. Consistent with previous studies, we consider certain examples where we apply weak fields with a distinct pole structure in order to show that the reflection takes place exactly at the poles. We also discuss the effect of possible sub-cycle structures. We extend this reflection picture to fields which have no poles present and illustrate the effective reflections with explicit examples. An additional field strength dependence for the rate occurs in such cases. We analytically compute the characteristic threshold for this mechanism given by the critical combined Keldysh parameter. We discuss significant differences between these two types of fields. For various backgrounds, we present the contributing instantons and perform analytical computations for the corresponding rates treating both fields nonperturbatively. The validity of the results is confirmed by numerical computations. Considering different profiles for the strong field, we also discuss its impact on the critical combined Keldysh parameter

Similar works

Full text

thumbnail-image

DESY Publication Database

redirect
Last time updated on 12/10/2017

This paper was published in DESY Publication Database.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.