Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Goal-oriented adaptivity for a conforming residual minimization method in a dual discontinuous Galerkin norm

Abstract

We propose a goal-oriented mesh-adaptive algorithm for a finite element method stabilized via residual minimization on dual discontinuous-Galerkin norms. By solving a saddle-point problem, this residual minimization delivers a stable continuous approximation to the solution on each mesh instance and a residual projection onto a broken polynomial space, which is a robust error estimator to minimize the discrete energy norm via automatic mesh refinement. In this work, we propose and analyze a goal-oriented adaptive algorithm for this stable residual minimization. We solve the primal and adjoint problems considering the same saddle-point formulation and different right-hand sides. By solving a third stable problem, we obtain two efficient error estimates to guide goal oriented adaptivity. We illustrate the performance of this goal-oriented adaptive strategy on advection-diffusion reaction problems

Similar works

This paper was published in BCAM's Institutional Repository Data.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.