Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Kernelization of Vertex Cover by Structural Parameters

Abstract

In the NP-complete problem Vertex Cover, one is given a graph G and an integer k and are asked whether there exists a vertex set S ⊆ V (G) with size at most k such that every edge of the graph is incident to a vertex in S. In this thesis we explore techniques to solve Vertex Cover using parameterized algorithms, with a particular focus on kernelization by structural parameters. We present two new polynomial kernels for Vertex Cover, one parameterized by the size of a minimum degree-2 modulator, and one parameterized by the size of a minimum pseudoforest modulator. A degree-2 modulator is a vertex set X ⊆ V (G) such that G-X has maximum degree two, and a pseudoforest modulator is a vertex set X ⊆ V (G) such that every connected component of G-X has at most one cycle. Specifically, we provide polynomial time algorithms that for an input graph G and an integer k, outputs a graph G' and an integer k' such that G has a vertex cover of size k if and only if G' has a vertex cover of size k'. Moreover, the number of vertices of G' is bounded by O(|X|^7) where |X| is the size of a minimum degree-2 modulator for G, or bounded by O(|X|^12) where |X| is the size a minimum pseudoforest modulator for G. Our result extends known results on structural kernelization for Vertex Cover

Similar works

Full text

thumbnail-image

NORA - Norwegian Open Research Archives

redirect
Last time updated on 18/06/2017

This paper was published in NORA - Norwegian Open Research Archives.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.