Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Homotopy analysis of the Lippmann-Schwinger equation for seismic wavefield modeling in strongly scattering media

Abstract

We present an application of the homotopy analysis method for solving the integral equations of the Lippmann-Schwinger type, which occurs frequently in acoustic and seismic scattering theory. In this method, a series solution is created which is guaranteed to converge independent of the scattering potential. This series solution differs from the conventional Born series because it contains two auxiliary parameters ε and h and an operator H that can be selected freely in order to control the convergence properties of the scattering series. The ε-parameter which controls the degree of dissipation in the reference medium (that makes the wavefield updates localized in space) is known from the so-called convergent Born series theory; but its use in conjunction with the homotopy analysis method represents a novel feature of this work. By using H = I (where I is the identity operator) and varying the convergence control parameters h and ε, we obtain a family of scattering series which reduces to the conventional Born series when h = −1 and ε = 0. By using H = γ where γ is a particular preconditioner and varying the convergence control parameters h and ε, we obtain another family of scattering series which reduces to the so-called convergent Born series when h = −1 and ε ≥ εc where εc is a critical dissipation parameter depending on the largest value of the scattering potential. This means that we have developed a kind of unified scattering series theory that includes the conventional and convergent Born series as special cases. By performing a series of 12 numerical experiments with a strongly scattering medium, we illustrate the effects of varying the (ε, h, H)-parameters on the convergence properties of the new homotopy scattering series. By using (ε, h, H) = (0.5, −0.8, I) we obtain a new scattering series that converges significantly faster than the convergent Born series. The use of a non-zero dissipation parameter ε seems to improve on the convergence properties of any scattering series, but one can now relax on the requirement ε ≥ εc from the convergent Born series theory, provided that a suitable value of the convergence control parameter h and operator H is used

Similar works

Full text

thumbnail-image

NORA - Norwegian Open Research Archives

redirect
Last time updated on 13/05/2020

This paper was published in NORA - Norwegian Open Research Archives.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.