Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Modeling temperature distribution inside an emulsion fuel droplet under convective heating: A key to predicting microexplosion and puffing

Abstract

© 2016 by Begell House, Inc. Microexplosion/puffing is rapid disintegration of a water-in-oil emulsion droplet caused by explosive boiling of embedded superheated water sub-droplets. To predict microexplosion/puffing, modeling the temperature distribution inside an emulsion droplet under convective heating is a prerequisite, since the temperature field determines the location of nucleation (vapor bubble initiation from superheated water). In the first part of the present study, convective heating of water-in-oil emulsion droplets under typical combustor conditions is investigated using high-fidelity simulation in order to accurately model inner-droplet temperature distribution. The shear force due to the ambient air flow induces internal circulation inside a droplet. It has been found that for droplets under investigation in the present study, the liquid Peclet number PeL is in a transitional regime of 100 < PeL < 500. The temperature field is therefore somewhat distorted by the velocity field, but the distortion is not strong enough to form Hill's vortex for the temperature field. In the second part of the present study, a novel approach is proposed to model the temperature field distortion by introducing angular dependency of the thermal conductivity and eccentricity of the temperature field. The model can reproduce the main features of the temperature field inside an emulsion droplet, and can be used to predict the nucleation location, which is a key initial condition of microexplosion/puffing

Similar works

This paper was published in Brunel University Research Archive.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.