Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Transformation of propositional calculus statements into integer and mixed integer programs: An approach towards automatic reformulation

Abstract

A systematic procedure for transforming a set of logical statements or logical conditions imposed on a model into an Integer Linear Progamming (ILP) formulation Mixed Integer Programming (MIP) formulation is presented. An ILP stated as a system of linear constraints involving integer variables and an objective function, provides a powerful representation of decision problems through a tightly interrelated closed system of choices. It supports direct representation of logical (Boolean or prepositional calculus) expressions. Binary variables (hereafter called logical variables) are first introduced and methods of logically connecting these to other variables are then presented. Simple constraints can be combined to construct logical relationships and the methods of formulating these are discussed. A reformulation procedure which uses the extended reverse polish representation of a compound logical form is then described. These reformulation procedures are illustrated by two examples. A scheme of implementation.ithin an LP modelling system is outlined

Similar works

This paper was published in Brunel University Research Archive.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.