Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

On designing H∞ filters with circular pole and error variance constraints

Abstract

Copyright [2003] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, we deal with the problem of designing a H∞ filter for discrete-time systems subject to error variance and circular pole constraints. Specifically, we aim to design a filter such that the H∞ norm of the filtering error-transfer function is not less than a given upper bound, while the poles of the filtering matrix are assigned within a prespecified circular region, and the steady-state error variance for each state is not more than the individual prespecified value. The filter design problem is formulated as an auxiliary matrix assignment problem. Both the existence condition and the explicit expression of the desired filters are then derived by using an algebraic matrix inequality approach. The proposed design algorithm is illustrated by a numerical example

Similar works

This paper was published in Brunel University Research Archive.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.