Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Stability analysis for stochastic Cohen-Grossberg neural networks with mixed time delays

Abstract

Copyright [2006] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this letter, the global asymptotic stability analysis problem is considered for a class of stochastic Cohen-Grossberg neural networks with mixed time delays, which consist of both the discrete and distributed time delays. Based on an Lyapunov-Krasovskii functional and the stochastic stability analysis theory, a linear matrix inequality (LMI) approach is developed to derive several sufficient conditions guaranteeing the global asymptotic convergence of the equilibrium point in the mean square. It is shown that the addressed stochastic Cohen-Grossberg neural networks with mixed delays are globally asymptotically stable in the mean square if two LMIs are feasible, where the feasibility of LMIs can be readily checked by the Matlab LMI toolbox. It is also pointed out that the main results comprise some existing results as special cases. A numerical example is given to demonstrate the usefulness of the proposed global stability criteria

Similar works

This paper was published in Brunel University Research Archive.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.