Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

FE/BE coupling for an acoustic fluid-structure interaction problem. Residual a posteriori error estimates

Abstract

This is the author's accepted manuscript. The final published article is available from the link below. Copyright © 2011 John Wiley & Sons, Ltd.In this paper, we developed an a posteriori error analysis of a coupling of finite elements and boundary elements for a fluid–structure interaction problem in two and three dimensions. This problem is governed by the acoustic and the elastodynamic equations in time-harmonic vibration. Our methods combined integral equations for the exterior fluid and FEMs for the elastic structure. It is well-known that because of the reduction of the boundary value problem to boundary integral equations, the solution is not unique in general. However, because of superposition of various potentials, we consider a boundary integral equation that is uniquely solvable and avoids the irregular frequencies of the negative Laplacian operator of the interior domain. In this paper, two stable procedures were considered; one is based on the nonsymmetric formulation and the other is based on a symmetric formulation. For both formulations, we derived reliable residual a posteriori error estimates. From the estimators we computed local error indicators that allowed us to develop an adaptive mesh refinement strategy. For the two-dimensional case we performed an adaptive algorithm on triangles, and for the three-dimensional case we used hanging nodes on hexahedrons. Numerical experiments underline our theoretical results.DFG German Research Foundatio

Similar works

This paper was published in Brunel University Research Archive.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.