Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Quantifying parameters for Bayesian prior assumptions when estimating the probability of failure of software

Abstract

Software reliability has become increasingly important, especially in life-critical situations. The ability to measure the results of testing and to quantify software reliability is needed. If this is accomplished, a certain minimum amount of reliability for a piece of software can be specified, and testing and/or other analysis may be done until that minimum number has been attained. There are many models for estimating software reliability. The accuracy of these models has been challenged and many revisions for the models and recalibration techniques have been devised. Of particular interest is the method of estimating the probability of failure of software when no failures have yet occurred in its current version as described by Miller. This model uses black box testing with formulae based on Bayesian estimation. The focus is on three interrelated issues: estimating the probability of failure when testing has revealed no errors; modifying this estimation when the input use distribution does not match the test distribution; and combining the results from random testing with other relevant information to obtain a possibly more accurate estimate of the probability of failure. Obtaining relevant information about the software and combining the results for a better estimate for the Miller model are discussed

Similar works

This paper was published in NASA Technical Reports Server.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.