Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Parallelization of a Six Degree of Freedom Entry Vehicle Trajectory Simulation Using OpenMP and OpenACC

Abstract

The art and science of writing parallelized software, using methods such as Open Multi-Processing (OpenMP) and Open Accelerators (OpenACC), is dominated by computer scientists. Engineers and non-computer scientists looking to apply these techniques to their project applications face a steep learning curve, especially when looking to adapt their original single threaded software to run multi-threaded on graphics processing units (GPUs). There are significant changes in mindset that must occur; such as how to manage memory, the organization of instructions, and the use of if statements (also known as branching). The purpose of this work is twofold: 1) to demonstrate the applicability of parallelized coding methodologies, OpenMP and OpenACC, to tasks outside of the typical large scale matrix mathematics; and 2) to discuss, from an engineers perspective, the lessons learned from parallelizing software using these computer science techniques. This work applies OpenMP, on both multi-core central processing units (CPUs) and Intel Xeon Phi 7210, and OpenACC on GPUs. These parallelization techniques are used to tackle the simulation of thousands of entry vehicle trajectories through the integration of six degree of freedom (DoF) equations of motion (EoM). The forces and moments acting on the entry vehicle, and used by the EoM, are estimated using multiple models of varying levels of complexity. Several benchmark comparisons are made on the execution of six DoF trajectory simulation: single thread Intel Xeon E5-2670 CPU, multi-thread CPU using OpenMP, multi-thread Xeon Phi 7210 using OpenMP, and multi-thread NVIDIA Tesla K40 GPU using OpenACC. These benchmarks are run on the Pleiades Supercomputer Cluster at the National Aeronautics and Space Administration (NASA) Ames Research Center (ARC), and a Xeon Phi 7210 node at NASA Langley Research Center (LaRC)

Similar works

This paper was published in NASA Technical Reports Server.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.