Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Abstract

Full detector simulation was among the largest CPU consumers in all CERN experiment software stacks for the first two runs of the Large Hadron Collider. In the early 2010s, it was projected that simulation demands would scale linearly with increasing luminosity, with only partial compensation from increasing computing resources. The extension of fast simulation approaches to cover more use cases that represent a larger fraction of the simulation budget is only part of the solution, because of intrinsic precision limitations. The remainder corresponds to speeding up the simulation software by several factors, which is not achievable by just applying simple optimizations to the current code base. In this context, the GeantV R&D project was launched, aiming to redesign the legacy particle transport code in order to benefit from features of fine-grained parallelism, including vectorization and increased locality of both instruction and data. This paper provides an extensive presentation of the results and achievements of this R&D project, as well as the conclusions and lessons learned from the beta version prototype.Full detector simulation was among the largest CPU consumer in all CERN experiment software stacks for the first two runs of the Large Hadron Collider (LHC). In the early 2010's, the projections were that simulation demands would scale linearly with luminosity increase, compensated only partially by an increase of computing resources. The extension of fast simulation approaches to more use cases, covering a larger fraction of the simulation budget, is only part of the solution due to intrinsic precision limitations. The remainder corresponds to speeding-up the simulation software by several factors, which is out of reach using simple optimizations on the current code base. In this context, the GeantV R&D project was launched, aiming to redesign the legacy particle transport codes in order to make them benefit from fine-grained parallelism features such as vectorization, but also from increased code and data locality. This paper presents extensively the results and achievements of this R&D, as well as the conclusions and lessons learnt from the beta prototype

Similar works

Full text

thumbnail-image

CERN Document Server

redirect
Last time updated on 24/05/2020

This paper was published in CERN Document Server.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.