Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

The effects of a cycling warm-up including high-intensity heavy-resistance conditioning contractions on subsequent 4 km time trial performance

Abstract

Prior exercise has been shown to improve subsequent performance via different mechanisms. Sport-specific conditioning contractions can be used to exploit the 'post-activation potentiation' (PAP) phenomenon to enhance performance although this has rarely been investigated in short endurance events. The aim of this study was to compare a cycling warm-up with PAP-inducing conditioning contractions (CW) with a moderate intensity warm-up (MW) on performance and physiological outcomes of 4 km time trial. Ten well-trained male endurance cyclists (V[Combining Dot Above]O2max 65.3 +/- 5.6 ml[middle dot]kg-1[middle dot]min-1) performed two 4 km cycling time trials following a 5-minute recovery after a warm-up at 60% of V[Combining Dot Above]O2max for 6.5-minutes (MW), and a warm-up with conditioning contractions (CW) consisting of 5 minutes at 60% of V[Combining Dot Above]O2max then 3 x 10-seconds at 70% of peak power interspersed with 30-seconds recovery. Blood lactate concentrations were measured before and after time trial. Expired gases were analysed along with time, power output (PO), and peak forces over each 500 m split. Following CW, mean completion time was reduced (1.7 +/- 3.5 s p > 0.05), PO increased (5.1 +/- 10.5 W p > 0.05) as did peak force per pedal stroke (5.7 +/- 11 N p > 0.05) when compared to MW. V[Combining Dot Above]O2 increased (1.4 +/- 1.6 ml[middle dot]kg-1[middle dot]min-1 p < 0.05) following CW, whilst RER decreased (0.05 +/- 0.02 p < 0.05). Physiological and performance differences following CW were greatest over the first 1500 m of the trials. The results suggest a PAP-inducing warm-up alters V[Combining Dot Above]O2 kinetics and can lead to performance improvements in short endurance cycling but work and recovery durations should be optimised for each athlete

Similar works

This paper was published in ChesterRep.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.