Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Numerical Approximation for a Stochastic Fractional Differential Equation Driven by Integrated Multiplicative Noise

Abstract

We consider a numerical approximation for stochastic fractional differential equations driven by integrated multiplicative noise. The fractional derivative is in the Caputo sense with the fractional order α∈(0,1), and the non-linear terms satisfy the global Lipschitz conditions. We first approximate the noise with the piecewise constant function to obtain the regularized stochastic fractional differential equation. By applying Minkowski’s inequality for double integrals, we establish that the error between the exact solution and the solution of the regularized problem has an order of O(Δtα) in the mean square norm, where Δt denotes the step size. To validate our theoretical conclusions, numerical examples are presented, demonstrating the consistency of the numerical results with the established theory

Similar works

This paper was published in ChesterRep.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.