Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Master of Science

Abstract

thesisRecent advancements in High Performance Computing (HPC) infrastructure with tradi- tional computing systems augmented with accelerators like graphic processing units (GPUs) and coprocessors like Intel Xeon Phi have successfully enabled predictive simulations specifi- cally Computational Fluid Dynamics (CFD) with more accuracy and speed. One of the most significant challenges in high-performance computing is to provide a software framework that can scale efficiently and minimize rewriting code to support diverse hardware configurations. Algorithms and framework support have been developed to deal with complexities and provide abstractions for a task to be compatible with various hardware targets. Software is written in C++ and represented as a Directed Acyclic Graph (DAG) with nodes that implement actual mathematical calculations. This thesis will present an improved approach for scheduling and execution of computational tasks within a heterogeneous CPU-GPU com- puting system insulting application developers with the inherent complexity in parallelism. The details will be presented within a context to facilitate the solution of partial differential equations on large clusters using graph theory

Similar works

Full text

thumbnail-image

The University of Utah: J. Willard Marriott Digital Library

redirect
Last time updated on 01/01/2020

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.