Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Wireless integrated circuit for 100-channel neural stimulation

Abstract

Journal ArticleWe present the design of an integrated circuit for wireless neural stimulation, along with bench-top and in-vivo experimental results. The chip has the ability to drive 100 individual stimulation electrodes with constant-current pulses of varying amplitude, duration, interphasic delay, and repetition rate. The stimulation is done using a biphasic (cathodic and anodic) current source, injecting and retracting charge from the nervous system. Wireless communication and power are achieved over a 2.765-MHz inductive link. Only two off-chip components are needed to operate the stimulator: a 10-nF capacitor to aid in power supply regulation and a coil for power and command reception. The chip was fabricated in a commercially available 0.6-μm 2P3M BiCMOS process. The chip was able to activate motor fibers to produce muscle twitches via a Utah Slanted Electrode Array implanted in cat sciatic nerve, and to activate sensory fibers to recruit evoked potentials in somatosensory cortex

Similar works

Full text

thumbnail-image

The University of Utah: J. Willard Marriott Digital Library

redirect
Last time updated on 01/01/2020

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.