Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Autonomous Autorotation of a Tilt-Rotor Aircraft Using Model Predictive Control

Abstract

Tilt rotor vehicles are governed by FAA laws also used for conventional helicopters, which require autorotational maneuvering and landing given a total power failure. With low inertia rotors and high disk loading of tilt rotor vehicles, this already difficult task becomes significantly more challenging. In this work, a model predictive controller is developed to autonomously maneuver and land a tilt rotor given complete power loss. A high fidelity model of a tilt rotor vehicle is created and used to simulate the vehicle dynamics and response to control inputs. A reduced order dynamic model is used within a model predictive control algorithm to predict vehicle states on a receding horizon and optimize the control inputs. Constraint and cost functions are designed to promote reliable nonlinear optimization using a recurrent neural network. Simulation results show that the controller works in both normal operation states and in power-off autorotation

Similar works

This paper was published in Embry-Riddle Aeronautical University.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.