Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Influence of Periodic Wall Roughness on the Slip Behaviour at Liquid/Solid Interfaces: Molecular-Scale Simulations Versus Continuum Predictions

Abstract

The influence of surface roughness on the slip behavior of a Newtonian liquid in steady planar shear is investigated using three different approaches, namely Stokes flow calculations, molecular dynamics (MD) simulations and a statistical mechanical model for the friction coefficient between a corrugated wall and the first liquid layer. These approaches are used to probe the behavior of the slip length as a function of the slope parameter ka=2πa/λ,where a and λ represent the amplitude and wavelength characterizing the periodic corrugation of the bounding surface. The molecular and continuum approaches both confirm a monotonic decay in the slip length with increasing kabut the rate of decay as well as the magnitude of the slip length obtained from the Stokes flow solutions exceed the MD predictions as the wall feature sizes approach the liquid molecular dimensions. In the limit of molecular-scale wall corrugation, a Green–Kubo analysis based on the fluctuation–dissipation theorem accurately reproduces the MD results for the behavior of the slip length as a function of a. In combination, these three approaches provide a detailed picture of the influence of periodic roughness on the slip length which spans multiple length scales ranging from molecular to macroscopic dimensions

Similar works

Full text

thumbnail-image

CORE

redirect
Last time updated on 27/01/2020

This paper was published in CORE.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.