Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Abstract

Low adherence to cardiac rehabilitation (CR) might be improved by remote monitoring systems that can be used to motivate and supervise patients and tailor CR safely and effectively to their needs. The main objective of this study was to evaluate the feasibility of a smartphone-guided training system (GEX) and whether it could improve exercise capacity compared to CR delivered by conventional methods for patients with coronary artery disease (CAD). A prospective, randomized, international, multi-center study comparing CR delivered by conventional means (CG) or by remote monitoring (IG) using a new training steering/feedback tool (GEx System). This consisted of a sensor monitoring breathing rate and the electrocardiogram that transmitted information on training intensity, arrhythmias and adherence to training prescriptions, wirelessly via the internet, to a medical team that provided feedback and adjusted training prescriptions. Exercise capacity was evaluated prior to and 6 months after intervention. 118 patients (58 +/- 10 years, 105 men) with CAD referred for CR were randomized (IG: n = 55, CG: n = 63). However, 15 patients (27 %) in the IG and 18 (29 %) in the CG withdrew participation and technical problems prevented a further 21 patients (38 %) in the IG from participating. No training-related complications occurred. For those who completed the study, peak VO2 improved more (p = 0.005) in the IG (1.76 +/- 4.1 ml/min/kg) compared to CG (-0.4 +/- 2.7 ml/min/kg). A newly designed system for home-based CR appears feasible, safe and improves exercise capacity compared to national CR. Technical problems reflected the complexity of applying remote monitoring solutions at an international level.</p

Similar works

Full text

thumbnail-image

Maastricht University Research Portal

redirect
Last time updated on 13/05/2023

This paper was published in Maastricht University Research Portal.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.