Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Multipath Transmission Scheduling in Millimeter Wave Cloud Radio Access Networks

Abstract

Millimeter wave (mmWave) communications provide great potential for next-generation cellular networks to meet the demands of fast-growing mobile data traffic with plentiful spectrum available. However, in a mmWave cellular system, the shadowing and blockage effects lead to the intermittent connectivity, and the handovers are more frequent. This paper investigates an "all- mmWave" cloud radio access network (cloud-RAN), in which both the fronthaul and the radio access links operate at mmWave. To address the intermittent transmissions, we allow the mobile users (MUs) to establish multiple connections to the central unit over the remote radio heads (RRHs). Specifically, we propose a multipath transmission framework by leveraging the "all- mmWave" cloud-RAN architecture, which makes decisions of the RRH association and the packet transmission scheduling according to the time- varying network statistics, such that a MU experiences the minimum queueing delay and packet drops. The joint RRH association and transmission scheduling problem is formulated as a Markov decision process (MDP). Due to the problem size, a low-complexity online learning scheme is put forward, which requires no a priori statistic information of network dynamics. Simulations show that our proposed scheme outperforms the state-of- art baselines, in terms of average queue length and average packet dropping rate.</p

Similar works

Full text

thumbnail-image

VTT Research System

redirect
Last time updated on 05/04/2020

This paper was published in VTT Research System.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.