Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Delay driven multi-way circuit partitioning.

Abstract

Wong Sze Hon.Thesis (M.Phil.)--Chinese University of Hong Kong, 2003.Includes bibliographical references (leaves 88-91).Abstracts in English and Chinese.Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Preliminaries --- p.1Chapter 1.2 --- Motivations --- p.1Chapter 1.3 --- Contributions --- p.3Chapter 1.4 --- Organization of the Thesis --- p.4Chapter 2 --- VLSI Physical Design Automation --- p.5Chapter 2.1 --- Preliminaries --- p.5Chapter 2.2 --- VLSI Design Cycle [1] --- p.6Chapter 2.2.1 --- System Specification --- p.6Chapter 2.2.2 --- Architectural Design --- p.6Chapter 2.2.3 --- Functional Design --- p.6Chapter 2.2.4 --- Logic Design --- p.8Chapter 2.2.5 --- Circuit Design --- p.8Chapter 2.2.6 --- Physical Design --- p.8Chapter 2.2.7 --- Fabrication --- p.8Chapter 2.2.8 --- Packaging and Testing --- p.9Chapter 2.3 --- Physical Design Cycle [1] --- p.9Chapter 2.3.1 --- Partitioning --- p.9Chapter 2.3.2 --- Floorplanning and Placement --- p.11Chapter 2.3.3 --- Routing --- p.11Chapter 2.3.4 --- Compaction --- p.12Chapter 2.3.5 --- Extraction and Verification --- p.12Chapter 2.4 --- Chapter Summary --- p.12Chapter 3 --- Recent Approaches on Circuit Partitioning --- p.14Chapter 3.1 --- Preliminaries --- p.14Chapter 3.2 --- Circuit Representation --- p.15Chapter 3.3 --- Delay Modelling --- p.16Chapter 3.4 --- Partitioning Objectives --- p.19Chapter 3.4.1 --- Interconnections between Partitions --- p.19Chapter 3.4.2 --- Delay Minimization --- p.19Chapter 3.4.3 --- Area and Number of Partitions --- p.20Chapter 3.5 --- Partitioning Algorithms --- p.20Chapter 3.5.1 --- Cut-size Driven Partitioning Algorithm --- p.21Chapter 3.5.2 --- Delay Driven Partitioning Algorithm --- p.32Chapter 3.5.3 --- Acyclic Circuit Partitioning Algorithm --- p.33Chapter 4 --- Clustering Based Acyclic Multi-way Partitioning --- p.38Chapter 4.1 --- Preliminaries --- p.38Chapter 4.2 --- Previous Works on Clustering Based Partitioning --- p.39Chapter 4.2.1 --- Multilevel Circuit Partitioning [2] --- p.40Chapter 4.2.2 --- Cluster-Oriented Iterative-Improvement Partitioner [3] --- p.42Chapter 4.2.3 --- Section Summary --- p.44Chapter 4.3 --- Problem Formulation --- p.45Chapter 4.4 --- Clustering Based Acyclic Multi-Way Partitioning --- p.46Chapter 4.5 --- Modified Fan-out Free Cone Decomposition --- p.47Chapter 4.6 --- Clustering Phase --- p.48Chapter 4.7 --- Partitioning Phase --- p.51Chapter 4.8 --- The Acyclic Constraint --- p.52Chapter 4.9 --- Experimental Results --- p.57Chapter 4.10 --- Chapter Summary --- p.58Chapter 5 --- Network Flow Based Multi-way Partitioning --- p.61Chapter 5.1 --- Preliminaries --- p.61Chapter 5.2 --- Notations and Definitions --- p.62Chapter 5.3 --- Net Modelling --- p.63Chapter 5.4 --- Previous Works on Network Flow Based Partitioning --- p.64Chapter 5.4.1 --- Network Flow Based Min-Cut Balanced Partitioning [4] --- p.65Chapter 5.4.2 --- Network Flow Based Circuit Partitioning for Time-multiplexed FPGAs [5] --- p.66Chapter 5.5 --- Proposed Net Modelling --- p.70Chapter 5.6 --- Partitioning Properties Based on the Proposed Net Modelling --- p.73Chapter 5.7 --- Partitioning Step --- p.75Chapter 5.8 --- Constrained FM Post Processing Step --- p.79Chapter 5.9 --- Experiment Results --- p.81Chapter 6 --- Conclusion --- p.86Bibliography --- p.8

Similar works

This paper was published in CUHK Digital Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.