Repository landing page

We are not able to resolve this OAI Identifier to the repository landing page. If you are the repository manager for this record, please head to the Dashboard and adjust the settings.

Placement and routing for cross-referencing digital microfluidic biochips.

Abstract

Xiao, Zigang."October 2010."Thesis (M.Phil.)--Chinese University of Hong Kong, 2011.Includes bibliographical references (leaves 62-66).Abstracts in English and Chinese.Abstract --- p.iAcknowledgement --- p.viChapter 1 --- Introduction --- p.1Chapter 1.1 --- Microfluidic Technology --- p.2Chapter 1.1.1 --- Continuous Flow Microfluidic System --- p.2Chapter 1.1.2 --- Digital Microfluidic System --- p.2Chapter 1.2 --- Pin-Constrained Biochips --- p.4Chapter 1.2.1 --- Droplet-Trace-Based Array Partitioning Method --- p.5Chapter 1.2.2 --- Broadcast-addressing Method --- p.5Chapter 1.2.3 --- Cross-Referencing Method --- p.6Chapter 1.2.3.1 --- Electrode Interference in Cross-Referencing Biochips --- p.7Chapter 1.3 --- Computer-Aided Design Techniques for Biochip --- p.8Chapter 1.4 --- Placement Problem in Biochips --- p.8Chapter 1.5 --- Droplet Routing Problem in Cross-Referencing Biochips --- p.11Chapter 1.6 --- Our Contributions --- p.14Chapter 1.7 --- Thesis Organization --- p.15Chapter 2 --- Literature Review --- p.16Chapter 2.1 --- Introduction --- p.16Chapter 2.2 --- Previous Works on Placement --- p.17Chapter 2.2.1 --- Basic Simulated Annealing --- p.17Chapter 2.2.2 --- Unified Synthesis Approach --- p.18Chapter 2.2.3 --- Droplet-Routing-Aware Unified Synthesis Approach --- p.19Chapter 2.2.4 --- Simulated Annealing Using T-tree Representation --- p.20Chapter 2.3 --- Previous Works on Routing --- p.21Chapter 2.3.1 --- Direct-Addressing Droplet Routing --- p.22Chapter 2.3.1.1 --- A* Search Method --- p.22Chapter 2.3.1.2 --- Open Shortest Path First Method --- p.23Chapter 2.3.1.3 --- A Two Phase Algorithm --- p.24Chapter 2.3.1.4 --- Network-Flow Based Method --- p.25Chapter 2.3.1.5 --- Bypassibility and Concession Method --- p.26Chapter 2.3.2 --- Cross-Referencing Droplet Routing --- p.28Chapter 2.3.2.1 --- Graph Coloring Method --- p.28Chapter 2.3.2.2 --- Clique Partitioning Method --- p.30Chapter 2.3.2.3 --- Progressive-ILP Method --- p.31Chapter 2.4 --- Conclusion --- p.32Chapter 3 --- CrossRouter for Cross-Referencing Biochip --- p.33Chapter 3.1 --- Introduction --- p.33Chapter 3.2 --- Problem Formulation --- p.34Chapter 3.3 --- Overview of Our Method --- p.35Chapter 3.4 --- Net Order Computation --- p.35Chapter 3.5 --- Propagation Stage --- p.36Chapter 3.5.1 --- Fluidic Constraint Check --- p.38Chapter 3.5.2 --- Electrode Constraint Check --- p.38Chapter 3.5.3 --- Handling 3-pin net --- p.44Chapter 3.5.4 --- Waste Reservoir --- p.45Chapter 3.6 --- Backtracking Stage --- p.45Chapter 3.7 --- Rip-up and Re-route Nets --- p.45Chapter 3.8 --- Experimental Results --- p.46Chapter 3.9 --- Conclusion --- p.47Chapter 4 --- Placement in Cross-Referencing Biochip --- p.49Chapter 4.1 --- Introduction --- p.49Chapter 4.2 --- Problem Formulation --- p.50Chapter 4.3 --- Overview of the method --- p.50Chapter 4.4 --- Dispenser and Reservoir Location Generation --- p.51Chapter 4.5 --- Solving Placement Problem Using ILP --- p.51Chapter 4.5.1 --- Constraints --- p.53Chapter 4.5.1.1 --- Validity of modules --- p.53Chapter 4.5.1.2 --- Non-overlapping and separation of Modules --- p.53Chapter 4.5.1.3 --- Droplet-Routing length constraint --- p.54Chapter 4.5.1.4 --- Optical detector resource constraint --- p.55Chapter 4.5.2 --- Objective --- p.55Chapter 4.5.3 --- Problem Partition --- p.56Chapter 4.6 --- Pin Assignment --- p.56Chapter 4.7 --- Experimental Results --- p.57Chapter 4.8 --- Conclusion --- p.59Chapter 5 --- Conclusion --- p.60Bibliography --- p.6

Similar works

This paper was published in CUHK Digital Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.